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We show that diffusion approximations, including modified diffusion 
approximations, can be problematic since the proper choice of local boundary 
conditions (if any exist) is not obvious. For a class of Markov processes in one 
dimension, we show that to leading order it is proper to use a diffusion 
(Fokker-Planck) approximation to compute mean exit times with a simple 
absorbing boundary condition. However, this is only true for the leading term in 
the asymptotic expansion of the mean exit time. Higher order correction terms 
do not, in general, satisfy simple absorbing boundary conditions. In addition, 
the diffusion approximation for the calculation of mean exit times is shown to 
break down as the initial point approaches the boundary, and leads to an 
increasing relative error. By introducing a boundary layer, we show how to 
correct the diffusion approximation to obtain a uniform approximation of the 
mean exit time. We illustrate these considerations with a number of examples, 
including a jump process which leads to Kramers' diffusion model. This example 
represents an extension to a multivariate process. 

KEY WORDS: Jump process; master equation; diffusion approximations; 
boundary conditions; singular perturbations. 

1. I N T R O D U C T I O N  

T h e  p r o b l e m  of  a p p r o x i m a t i n g  a M a r k o v  j u m p  p r o c e s s  X(n) b y  a ( c o n -  

t i n u o u s  p a t h )  d i f fu s ion  p r o c e s s  X(t )  h a s  b e e n  t h e  s u b j e c t  o f  i n v e s t i g a t i o n  

for  m a n y  years .  (1 5~ F o r  M a r k o v  p r o c e s s e s  t h a t  h a v e  a s ing le  ( m e t a - )  s t a b l e  
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equilibrium state in a given domain D, asymptotic and singular pertur- 
bation techniques were recently developed (~s'11) to construct both the 
stationary density of fluctuations and the mean escape time from D. Based 
on these analyses, the question of the validity of diffusion approximations 
has been clarified. The criterion for the validity depends on the relative size 
of the first and second conditional moments of the jump process, as 
described below. However, even when the diffusion approximation appears 
to be valid, the question of the proper choice of boundary conditions to be 
used with the diffusion equation for the mean first passage time problem 
arises. 

The mean escape time of the jump process X(n) from D depends on 
the behavior of X(n) near the boundary OD of D. The process X(n) can exit 
D by jumping over the boundary without hitting it, unlike the continuous 
diffusion process X(t), which has to hit the boundary to exit D. General 
asymptotic methods were developed in Refs. 6-8 and 11 for problems 
where diffusion approximations are not valid. The following question arises 
in a natural way. Is the mean first passage time of the process X(n) out of 
D well approximated by that of the approximating diffusion process X(t) 
when such approximations appear to be valid? The purpose of this paper is 
to answer this question and to discuss the appropriate boundary conditions 
(if any) for the approximating diffusions. We show that the mean escape 
time z(x) from D for trajectories of X(n) that start at a point x in D outside 
a boundary layer near 0D is well approximated by the escape time of the 
corresponding diffusion approximation. However, for initial points x in a 
boundary layer near 0D, z(x) is not well approximated by that of the dif- 
fusion approximation and, indeed, the relative error becomes 1 as the 
initial point approaches 0D. We show that v(x) suffers a discontinuity at 
OD and show how to correct the diffusion approximation to obtain a 
uniform approximation of ~(x) whose relative error is uniformly small 
throughout D. The fact that z(x) suffers a discontinuity at ~D has already 
been noted in Refs. 11-14 in this context as well as in other problems. 

Thus, we consider the process X(n) defined by the stochastic difference 
equation 

X(n + 1) = X(n) + e~(n) (1.1) 

where the conditional jump probability density of the process ~(n) is given 
by 

ozPr(((n)<~zlX(n)=x, X ( n -  1) = X,_l ..... X(0) = Xo) 

= w(z, x, ~) (1.2) 
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with 

w(z,x,g)~Wo(Z,X)+eWl(Z,X)+"" as e ~ 0  (1.3) 

and e is a small parameter representing, e.g., a measure of jump size relative 
to system size. The forward Kolmogorov equation (or the master equation) 
for the transition probability density 

p(x, y, n, e) = ~ y  Pr(X(n) ~< y [ X(0) = x) (1.4) 

of the Markov process X(n) is given by (3) 

p ( x , y , n + l , e ) = f ~ o  p ( x , y - g z ,  n,e) w ( z , y - e z ,  eldz (1.5t 

The Kramers-Moyal (1'I~ expansion of (1.5) is obtained by expanding the 
integral in a power series in e, 

Ap = p(x, y, n + 1, g) - p(x, y, n, g) 

~ ( - ~ ) ' 8 "  ~o = Um~j(y) p(x, y, n, ~) (1.6) 
,,= t n! ~y" j= 

where 

m~j(y) z~wj(z, y) dz (n = 0, 1, 2,...) (1.7) 

The mean flow is defined by 

)~=mlx(x) = zwl(z,x) dz (1.8) 

where the dot denotes differentiation with respect to the continuous time 
variable t = e2n. A point Xo is referred to as an equilibrium in a domain D if 
it is an equilibrium point of (1.8) in D. As shown in Refs. 6 and 7, the stan- 
dard diffusion approximation obtained by truncating the series in (l.6) at 
n = 2 is valid under the assumption that 

mlo(x) = zwo(z, x) dz = 0 (1.9) 
- - o o  

Equation (1.6) is then reduced to 

132 (~ 12 2 O 2 
-- -~-f Em11(y) p] +-~-~y2 [m20(y) p] + O(e3)= Ap (1.10) 
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Expanding 

p(x, y, n, ~) ~ po(X, y, n) + epl(x, y, n) + ... (1.11) 

we obtain the Fokker-Planck equation in terms of the continuous time 
t = ~2n as 

@o ~ . 1 a 2 
-- ~-~ [ran(Y) PoJ + ~ y 2  [m2o(Y) Po] (1.12) 

~---7 = 

Equation (1.12) corresponds to the diffusion process X(t) defined by the 
It6 stochastic differential equation 

dX---ran(X) dt + x ~ 2 o  (X) dw(t) (1.13) 

where w(t) is the standard Brownian motion. We refer to X(t) as the stan- 
dard diffusion approximation for the jump process X(n), and to Eq. (1.12) 
as the standard diffusion approximation to (1.5). We observe that the 
higher order terms in (1.11) are regular perturbations of Po, so that Po is a 
valid approximation to p on time intervals for which the process X(n) stays 
in D. This approximation procedure fails if condition (1.9) is not satisfied. 
Indeed, the Fokker-Planck equation corresponding to a truncation of the 
series in (1.6) at order e 2 is given by 

~/~ 9 o e 9 2 

- 9y {[rnl~ + ~ y 2  [m2o(Y) / 3] (1.14) 
Ot 

Equation (1.14) is of singular perturbation type as e ~ 0 (t=en), and in 
fact 

@--;/3 = o /3 (1.15) 

It follows that all terms in the Kramers-Moyal series are O(1) as e--,0, 
and therefore/3 is not a valid approximation to p. A full discussion of this 
point was given in Refs. 6 and 7 together with techniques for constructing 
asymptotic solutions directly from the master equation. 

A modified diffusion approximation has been proposed in Ref. 9 with 
the approximate Fokker-Planck equation 

@ ~ ~ 9 2 
- 6~y { [ M l ( y ) + e M n ( y ) ]  p} +~-~y2 [M2(y)p]  (1.16) 

~t 

The coefficients in (1.16) involve all of the moments of the jump process. 
We refer to Eq. (1.16) as the modified diffusion approximation to (1.5). We 
describe this procedure in more detail in Section 3. 
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In Section 2 we discuss the standard diffusion approximation for 
processes satisfying condition (1.9). In Section 3 we discuss the modified 
diffusion approximation for processes not satisfying (1.9). In Section 4 we 
consider some specific examples, including an example of a two-dimen- 
sional jump process. 

2. BOUNDARY CONDITIONS FOR THE STANDARD DIF- 
FUSION A P P R O X I M A T I O N  

In this section we construct an asymptotic expansion of the mean time 
for the process X(n) to exit a given domain D. We confine our discussion to 
processes defined on the real line. We then compare this mean first passage 
time from D with that of the approximating diffusion process X(t). We now 
consider the Markov process X(n) defined by (1.1) and (1.2). We assume 
that the expansion (1.3) is valid and that (1.9) is satisfied in the domain 

D= {-c~ <x <B} (2.1) 

where 0 < B < oe. We assume that all the functions m~(x) are analytic. 
The mean "time" n(x) (the mean number of jumps) to exit D, given 

X ( 0 ) = x ,  is assumed to be finite. Then it is the solution of the 
equation(6 8,H) 

~r for x s D  (2.2) 
e o o  - -  

with the boundary condition 

n(x) = 0 for x/> B (2.3) 

and the condition that n(x) does not grow exponentially as x -~  - o e .  We 
construct the outer expansion of the solution n(x) in the form 

n 2(x)  n , ( x )  
n ( x ) ~ +  ~ + n o ( x ) +  -.. (2.4) 

as e --. 0. As shown below, this expansion is valid away from the boundary 
point x = B. 

For  B - x > e  we perform the following regular perturbation 
procedure. We substitute (1.3) and (2.4) into (2.2) and extend the upper 
limit of integration in (2.2) to infinity. We then equate the coefficient of 
each power of e separately to zero to obtain a recursive system of equations 
for the determination of ni(x). The first two equations are given by 

Lon_2(x) =m11(x) dn_2(x) 1 d2n_2(x) - -  t--~m2o(X ) - - 1  (2.5) dx dx 2 
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and 

dn_2(x) m21(x) dZn 2(x) 
Lon_l(x)  = -rn12(x) dx 2 dx 2 

m3o(X) d3n_2(x) 
6 dx 3 

(2.6) 

Further terms in the expansion can be obtained in a similar manner. We 
note that Eq. (2.5) is the mean first passage time equation for the 
approximating diffusion process defined by (1.13). (3 5) To use (2.5) and 
(2.6) we must prescribe boundary conditions for n 2(x) and n_l(x)  at 
x = B. Therefore we next determine these boundary conditions. The con- 
tinuity of the function n(x) at x = B is not obvious, since cases are known 
in which n(x) suffers a discontinuity at 9. (8'11-16) The fact that n ( B ) = 0  
therefore does not necessarily imply that n ( B -  ) = 0, and as a matter of fact 
n ( B - )  > 0  in general. Thus, the values of n_2(B), n_l(B),  and so on have 
to be determined in a consistent way. To complete the analysis a boundary 
layer expansion is needed. To resolve the question of boundary conditions 
we will have to match the boundary expansion with the outer expansion. 
Near the boundary, i.e., for B - x = O(e), the upper limit of integration in 
(2.2) cannot be extended to infinity, so the Kramers-Moyal  expansion can- 
not be employed. We introduce the boundary layer variable 

B - x  
i t= > 0  (2.7) 

and the boundary layer function 

N(rl) = n(x) (2.8) 

Since 

n(x + ez) = N(tl - z) (2.9) 

eq. (2.22) becomes 

I" N(tl-z)w(z,B-eq, e)dz-N(tl)= -1 
oO 

for t t > 0  (2.10) 

We assume the expansion 

N_2(q) N_,(t /)  
N(q) ~ e2 I- - - e  t- No(q) + "'" (2.11) 
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and use the perturbation procedure described above to obtain from (2.10) 
the following set of equations for t /> 0: 

and 

f 
t/ 

~~ 2(t/) = N _ z ( q - z )  Wo(Z, B)dz -N_2(r l )=O (2.12) 

5a0N l(t/)= -co t/N 2 ( q - z )  Wo,x(Z, B) dz 

f" - N_2(r l -z )  wl(z ,B)dz=S1N_2(rl)  (2.13) 
--oo 

1 2 ~ r/ 
~oUo(rl)=~L~'iU l (r l ) -~ rl j ~ N _ 2 ( q - z  ) Wo,xx(Z, B) dz 

+tl N_2(r l -z )  wl,x(z,B)dz 
- -  o o  

;~ - N 2( t / -z )  w2(z, B) d z -  1 (2.14) 
--oo 

where 

qs(~)= f~ d~" f o  N 2(Z) Wo(q-z, B) dz dtl 

is an analytic function in the lower half-plane. The function ~b(e) is defined 
uniquely up to a multiplicative constant. The function 

f oo e Wo(Z, B) dz ~o(~, B)= i~z 
- - o o  

is the characteristic function of the process ~(n), conditioned on x = B. 
The matching condition between the outer expansion (2.4) and the 

boundary layer expansion (2.11) is 

n(x) - N(tl) ~ 0 

Here the subscript x denotes partial differentiation with respect to x. From 
(2.3) we have Nj( t / )=0 for t/~<0 and all j. Equation(2.12) is a 
Wiener-Hopf equation whose solution can be constructed by the 
Wiener-Hopf method (see, e.g., Ref. 15). The Fourier transform of N z(tl) 
is given by 

I ~176 ~(~) (2.15t P~-2(c~) = 0o e'~"N_z(q) dq = 1 - ~o(Cg B) 
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as e - , 0 ,  x - , B ,  and t / - ,  0% to all orders in e. The behavior of N_z(//) as 
t / ~  oo is determined by the behavior of N 2(c~) as c~ ~ 0. This in turn is 
determined by the zero of the denominator  in (2.15) at ~ = 0. Since 

V~o(O, B) = ~_ Wo(Z, B) dz = 1 (2.16) 

and 

we have 

and 

where 

3'o(0, B) = im~o(B) = 0 

1 - ~o(~, B) ~ lm2o(B ) ~2 + ... 

05(0)+c~05'(0)+O(c~ 2) a 2 a_ l  
N-2(c0 = �89 + ~m3o(B ) a3 + O(~4) - ~2 t- 

(2.17) 

where 05(0) is an as yet undetermined constant, whose value uniquely 
determines 05(c~). We determine the constants 05(0) and n_2(B) by 
matching the outer expansion (2.4) as x - , B  with the boundary layer 
expansion (2.11) as q - ,  oo. We obtain to leading order [-O(1/e2)] 

n 2 ( x ) - N _ z ( t l ) = n  2 (B)+ia_~+a_2 t l - ,O  (2.21) 

as e - ,  0 and q - ,  oo. Hence a 2 = 0 and consequently 05(0)= 0, so that 
05(c~) = 0 and 

n_z(B) = 0 (2.22) 

Condition (2.22) shows that n_z(X ) is continuous at the boundary x = B. 
Next we calculate n I(B). To this end we solve Eq. (2.13) for N_a(t/). 

Since N_z(//)= 0 by (2.20) and (2.22), Eq. (2.13) is again a Wiener -Hopf  
equation with solution (2.15), and thus 

N _ l ( t l ) = - [ ( i a _ l + t l a _ 2 ) + o ( 1 ) ]  as 11--,oo (2.23) 

205(0). 205'(0) 2i05(0) m3o(B) 
(2.19) 

a _ Z - m z o ( B ) ,  a_l m2o(B) 3mZo(B) 

and so on. Hence, 

N 2(11) = - [ ( i a _ l + a _ 2 t l ) + o ( 1 ) ]  as q - , o o  (2.20) 

+ . . .  (2.18) 
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where q~(0) is again an undetermined constant. Using 

n 2(x) n '_2(B) (B-  x) + "" n '2(B)  r/ 
~2 /;2 /3 

t- " -  (2.24) 

by 

n I ( B ) - n ' 2 ( B ) q - N _ I ( ~ I ) ~ O  as ~/~oe (2.25) 

With (2.23) the condition (2.25) gives 

- i a  l = n _ l ( B ) ;  a 2 = n '  2(B) 

and hence 
ia 

n ~ (B) -  - - n ' _ 2 ( B  ) (2.26) 
a _  2 

satisfies 

It follows that n(x) suffers a discontinuity at x = B, since n(x) = 0 for x/> B. 
The discontinuity in n(x) is of order l/e, or more specifically 

N 1(0) 
n ( B - ) - n ( B + ) - - - + O ( 1 )  as e ~ 0  (2.27) 

e 

The mean number of jumps to leave D predicted by the diffusion 
approximation (1.13) is given by 

na(x) = n _2(x)//32 (2.28) 

Hence the relative error in using the diffusion approximation, given by 

ea(x ) = In(x) - nd(x)]/n(x ) (2.29) 

ea(x)--*O as e ~ 0  for B - x ~ > e  (2.30) 

However, this is not the case near x = B, since 

e d ( B ) ~ l  as e ~ 0  (2.31) 

Therefore the diffusion approximation with absorbing conditions at B 
correctly predicts the mean first passage time for initial conditions outside 
the boundary layer at x = B ,  i.e., for B - x ~ > e .  For initial conditions 
approaching the boundary the diffusion approximation leads to 
increasingly large errors. 

which follows from (2.22), the matching condition at order O(1/e) is given 
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A better approximation is obtained if na(x) is replaced by the uniform 
expansion 

n _2(x) + n_ l(x) -t N_I [(B -- x)/e] -- n _ I(B) -- n'_2(B)(x - B)/e 
nab(x)= ~2 ~ e 

(2.32) 

For nab(x) the relative error satisfies 

eab(X)=O(~) for all x E D  (2.33) 

We observe that the escape rate from D does not increase to infinity as 
x--* B, but rather becomes O(1/~). 

We turn now to the analysis of continuous-time Markov jump 
processes. Let X(t) be a Markov process defined by continuous dynamics 
between jumps and assume the jumps occur at exponential waiting times. 
Thus 

X(t + At) = X(t) + b(x, e) At + o(At) 

w.p. 1 - 2(x) At + o(At) (2.34) 

and 

X(t + At) = X(t) + b(x, e) At + e~(t) + o(At) 

2(x) (2.35) 
w.p. At+o(A t )  as A t ~ O  

The conditional probability density of ~(t) is given by 

8 
~---~Pr(r X( t ,  1)= Xn_ 1,..., X(O)=xo) 

= w ( z ,  x ,  

for all 
define 
Kolmogorov equation for the transition probability density of X(t) is given 

t > t , _  1 > ' " "  > t0 and all x,  x , _  1,..., x0. 
X(t) as a continuous-time Markov 

by 

8t = -- Oy [b(y, ~) p] 

(2.36) 

Equations (2.34) (2.36) 
process. The forward 

(2.37) )~(Y) p(x, y, t) 
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We assume 

b(y ,  e) ~ bo(y) + eba(y) + ""  

255 

(2.38) 

and that w(z, x, ~) has the expansion (1.3) as e ~ 0. The analysis of (2.37) is 
analogous to that of (1.5). The conditional moments  mnj(x) in (1.6) are 
now replaced by 

/~ lj(X) = bj(x)  -~- ;~(x) mlj(X ) 

rh.j(x) = 2(x) m.s(x  ), n > 1 (2.39) 

Thus the standard diffusion approximation is valid if we assume that 

rhxo(X ) = 0 (2.40) 

The mean first passage time z(x) for the process X( t )  to exit D, given 
the initial condition X ( 0 ) =  x, satisfies 

+ + w(z, dz 
J c~ 

,~(x) 
- - - z ( x ) =  - 1  for x < B  (2.41) 

and 

z (x )  = 0 for x ~> B (2.42) 

When B -  x >> e we seek an asymptotic solution of (2.4) in the form 

r(x)  = z 1(x)/e + to(X) + "'" (2.43) 

perturbation procedure described above, we obtain to Following the 
leading order 

Lo 27 _ l(X) = 1Fy/20(X ) 7S rr_ l(X) +- /~ I I (X)  27 I_ I(X) = -- 1, 

with z _ l ( B ) = 0 ,  and to the next order 

1 1 
f_~O~'0(X)= --/~/12(X) Tt I(X)---~/~21(X) "f" I (X)--~F~/30(X) T" l(X ) 

with 

z _ l ( B  ) = _ ( i~_1/~_2) z '_ l (B)  

x < B (2.44) 

(2.45) 

822/45/1-2 17 
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Here ~_j ( j =  1, 2) are determined by (2.19) with mjo replaced by rhjo 
( j =  1, 2, 3), and 

rh20(x ) = 2(x) m2o(X) (2.46) 

The conclusion is therefore the same as in (2.27)-(2.33). 

3, THE M O D I F I E D  D I F F U S I O N  A P P R O X I M A T I O N  

When (1.9) is not satisfied, the standard diffusion approximation to 
the process X(n) [cf. (1.1)] is valid only for the description of relatively 
small fluctuations about  a (meta-) stable equilibrium point, say at x = 0. 
For this case a modified Fokker-Planck equation of the form (1.16) has 
been proposed in Ref. 9. We give here an alternative derivation of (1.16), 
based on Refs. 6-8 and 11. It has been shown in Refs. 8 and 11 that the 
(quasi) steady-state probability density function of the process X(n) in D is 
given asymptotically by 

p(x) ~e  -q'~x)/~ ~ Ki(x ) ~i (3.1) 
i=O 

Here ~O'(x) is the nonzero solution of the equation 

f~  e'~ x) dz = 1 (3.2) 
- - o 0  

Equation (3.2) can be written as the equation (for t) 

@o(t, x ) =  1 (3.3) 

where q~0(t, x) is the first term in the expansion of the stationary con- 
ditional moment generating function qs(t, x) of the process ~(n), 

E(e'e(")[X(n) = x) = qb(t, x) ~ ~o(t, x) + 8qDl(t , x) q -  " "  (3.4) 

The function Ko(x) is given by 

with 

where 

Ko(x) = Ko,(X) Koz(X) 

K~ = exp (-f'.jo~/2(y) dy)/~11(x) 

Ix(x) = ~-~ @o(t, x) 
Gt  

t ~ t p ' ( x )  

(3.5) 

(3.6) 

(3.7) 
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and 

~2 x) t= I2(x) = ~ qs0(t, (3.8) 
q~'(x) 

The function Ko2(X) is given by 

Ko2(x)=exp [ fo q~l(O'(Y)' Y) dy ) (3.9) 

We wish to determine the coefficients M1, M~I, and M2 in (1.16), by 
requiring the solution of (1.16) to agree with the leading term of the expan- 
sion (3.1) of the solution of the master equation (1.5). This requirement 
determines two relations between the three coefficients in terms of ~ and 
Ko. These relations are 

2Mt(x)/M2(x) = --0'(x) (3.10) 

and 

[exp Io 2M@t) dt]/M2(x)= Ko(x) 
M2(t) A~ 

(3.11) 

where ~'(x) is defined by (3.2) and Ko(x) by (3.5). We note that the for- 
mula for M2(x) in Ref. 9 can be obtained by expanding e zr in (3.2), solv- 
ing for m~o(X)/~'(x), and using the result in (3.10). A third condition is 
necessary to determine the coefficients uniquely. This condition may be 
chosen in various ways. In Ref. 9, Ml(X) is chosen to be m~o(X), so as to 
preserve the limiting drift equation 2=M~(x)=m~o(X). We observe that 
other choices are clearly possible. Indeed, since for long time, drift 
equations are relevant only near equilibrium points, only the linear part of 
m~(x) near an equilibrium point is important. Thus, any choice that 
satisfies (3.10) and (3.11) and has the correct behavior near equilibrium 
points would appear to be equally good. 

If B is a characteristic boundary point, i.e., if 

satisfies 

and 

ml(x)~ ~ rnlj(x)e j 
j = 0  

ml(B) = 0, ml(x) < 0 for 0 < x < B (3.12) 

m l ( x )  > 0 for x>B 
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then the expected first passage time from the equilibrium point at 0 to B for 
the modified diffusion approximation (1.16), with M2(x) and MH(x ) 
defined by (3.10) and (3.11), respectively, agrees to leading order with that 
of the process X(n). The asymptotic expression for the expected time for 
the process X(n) to exit D, given X(0)= 0, is given by (8,m 

n(0) 7c Ko(0) eO(m/, m2o(0 ) m2o(B) 1/2 1 (3.13) 
Ko(B) m'lo(0) m'lo(B) rn2o(B) 

If, however, the initial point X(0)= x is in an e neighborhood of B, the 
mean time predicted by the modified diffusion approximation (1.16) is 
inaccurate. The uniform expansion of n(x) was given in Refs. 8 and 11 as 

l m,m(B)u2 ~ 2 (m'm(B).~ '/2 f(e-: ' ) / 'Fexp ( m20(B) j 
n(x)~n(O) \rcm20(B)J ~0 

du for B-x~>e 

(3.14) 

where U0(~/) is the solution of the Wiener-Hopf equation 

5go Uo(r/) = 0 (3.15) 

with s defined in (2.12), and the matching condition 

(m'm(B) ~/2 
Uo(r/) ~ 2 \ ~ j  r/ for r/>> 1 (3.16) 

When B is a noncharacteristic boundary, i.e., 

mlo(g ) < 0  (3.17) 

the modified diffusion approximation (1.16) with an absorbing boundary 
condition at x = B is not a good approximation to X(n). As a matter of 
fact, no simple (local) boundary conditions to be used with the modified 
diffusion approximation (1.16), that lead to an accurate approximation of 
the mean exit time, are known. The uniform expansion of n(x) for a non- 
characteristic boundary is given by 

n(x)=n(O) Uo(ff--~ --f) (3.18) 
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with 

/ 2~ ~ I/2 K o(0 ) 

exp[O(B)/e] 
(3.19) 

• S ~ ~ e "~'(~) ~"_ ~ Wo(Z, B)  Uo(n - z )  as a~ 

(see Refs. 8 and 11). Here Uo(q) is the solution of (3.15) with the matching 
condition 

Uo(t/) ~ 1 as q ~ o e  

In contrast to approaches based on diffusion approximations, either 
standard or modified, both of which require the addition of local boundary 
conditions, the methods developed in Refs. 6-8 and i1 give a general 
approach to the solution of equations (1.1) or (2.44) (2.45). These methods 
lead to explicit asymptotic expansions for the stationary probabilities and 
mean first passage times and do not require replacing the original boun- 
dary conditions (if any) by local boundary conditions. In addition, these 
methods lead to a systematic approach to obtaining corrections to the 
leading term. 

4. A P P L I C A T I O N S  A N D  E X A M P L E S  

We now present two examples which illustrate how to incorporate 
boundary corrections into diffusion approximations. Thus, we first consider 
a jump process on the lattice {ne ln = 0, _+ 1, +2, . .  ) which jumps one step 
to the left with probability l(x, e) and either one or two steps to the right 
with probability rl(x, e) or r2(x, e), respectively (see Fig. 1). An example of 
a symmetric (l~ =rl,  12=r2) two-step random walk was considered in 
Ref. 16, where the jump probabilities were assumed constant. Thus the 

% 

X - ~  X X+E X + 2 ~  

Fig. 1. Sketch of possible jumps from the point x, with the probabilities of each jump 
indicated. 
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process had zero drift and the master equation could be explicitly solved. 
In contrast, our process is nonsymmetric with nonconstant jump 
probabilities. Other examples of random walks and their approximations 
are discussed in the review article by Weiss and Rubin. (17) 

Thus 

w(z, x, e) = l(x, e) 6(z + 1) + [1 - l(x, ~) - rl(x , ~) - -  r2(x, e)] 3(z) 

+ 6(z-- 1) q(x ,  e) + 6(z-- 2) r2(x, e) (4.1) 

We assume that first moment ml(x, e) is O(e), i.e., 

ml(x  , g) = --l(x, g) J r  rt(x, e) + 2r2(x, g) = emil(x) (4.2) 

so that (1.9) is satisfied. It follows that the second and third moments are 
given by 

m2(x, g) = 2q(x,  g) + 6r2(x, e) - emil(x) = m2o(x) + gm21(X ) 
(4.3) 

m3(x ) = 6r2(x, e) + gmll(X ) = m30(x ) q- gm31(x ) 

Setting t = ~2n and treating x and t as continuous variables, we obtain the 
standard diffusion approximation for this process as given by the It6 
equation 

dx = mll(X ) dt + x~o2o (x) dw (4.4) 

The Fokker-Planck equation for (4.4) is 

@ ~ 1 0 2 
(?t Ox [rnll(x) p] + ~ ~ [-m2o(X) p] = Lp (4.5) 

The mean number of jumps n(x) to exit D, given X(0)= x, is given by 

n_2(x) +_n_l(x) + ...  
nB(x) ~2 (4.6) 

where 

L*n_2(x) = mll(X) - -  
dn_2(x) m20(x) d2n 2(x) 

+ - -  = - 1  for x < B  
dx 2 dx 2 

(4.7) 

with the boundary condition 

n_2(B) = 0 
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and the condition that n_2(x) does not grow exponentially as x ~  -oo.  
The correction n_l(X) is the solution of 

1 den-2(x) m3~ d3n-2(x) for x < B  
L*n _ l(x) = -- ~ m21 (x) dx 2 6 dx 3 (4.8) 

with 

n _ , ( B ) = A n ' 2 ( B )  

and the growth condition as x ~ -oo  imposed on n_2(x). Equation (2.26) 
implies that the constant A is given by 

[rl(B, 0) + 2r2(B, 0)] r2(B, O) 
A = -- (4.9) 

[rt(B, 0) + 3r2(B, 0)] [3rl(B, 0) + 4r2(B, 0)] 

The function N_~(q) is given by 

l(B, O) r2(B, O) 
N ,(r/)= --n'_2(B ) ~/-- [l(B, 0)+r2(B, 0)][r ,(B, 0)+21(B, 0)] 

F [ -- r2(B, 0)]"] '~ 
XL1- \ /(B, 0) } JJ (4.10) 

Hence 

n 2(x) n_~(x) 
ndb(X) = ~2 J r - - - B  

n'_2(B) l(B, O) r2(B, O) 

e [l(B, O) + r2(B, 0)] [q(B,  O) + 21(B, 0)] 

-- r2(B, 0)~ (B- x)/~ • / (4.11) 

Thus, e.g., the mean number of steps required to reach or exceed B, starting 
one lattice point away from B, is given by 

n(B - ~) ~ nab(B -- ~) 

n'_2(B ) rl(B, O) + l(B, O) - r2(B, O) 
e rl(B, O) + 2l(B, O) 

[1 +o(1)] 

Thus, if absorbing boundary conditions are employed with the diffusion 
approximation, the absolute error in the mean exit time will be O(1/e), and 
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the relative error will be O(e) if x is bounded away from x = B, but will be 
O(1) if x is within O(e) of the boundary point x = B .  In contrast, for the 
correct boundary condition, the relative error is uniformly O(e) throughout 
the domain. 

Next we give an application to Kramers' diffusion problem. We 
consider a particle of mass M whose motion between collisions with small 
particles of mass m (with m ~ M) is governed by the equations 

X= Y, Y= -U' (X)  (4.12) 

where U(x) is the potential whose graph is shown in Fig. 2. The small 
particles have velocity +_(kT/m) m with probability 1/2, where k is 
Boltzmann's constant and T is temperature. Consequently, if ~ is the 
random velocity of the small particles, then 

(~) =0, (~2) =kT/m (4.13) 

This distribution, which matches the first two moments of the 
Maxwell-Boltzmann distribution, is chosen for its simplicity. Upon 
collision, the value of the velocity Y changes according to the law of an 
elastic collision. Thus, the motion of the particle in phase space is a 
stochastic process (Y(t), Y(t)). If A Y is the change in velocity, given a 
velocity Y of the heavy particle, 

2m 
A Y =  (~ - Y ) -  (4.14) 

M + m  

U(x) 

Fig. 2. Sketch of the potential U(x). 

X 
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Here 2 m / ( M + m ) ~ 2 m / M  is the reduced mass for the collision. The 
probability density for the time between collisions follows an exponential 
distribution with parameter c~=M~/m,  so that fl is a measure of 
"viscosity." In order to use this model to calculate the escape rate of the 
heavy particle from the potential well we denote by D the domain of attrac- 
tion in phase space of the stable equilibrium point x = A, y = 0, and by F 
its boundary (the "separatrix" defined below). The escape rate is inversely 
proportional to the mean time ~ to cross F. The mean time r(x, y), con- 
ditioned on the initial values i i (0 )=x ,  Y(0)= y, is the solution of the 
equation (6) 

L'c = y -~x U' ( x ) -~y + ~ x, y + ---~ 

+-c (x, y - t - -~  [ - ( k T )  1/2- y ] ) - 2 ~ ( x ,  y ) } = - 1  for (x, y) e D 

(4.15) 

and 
~ ( x , y ) = 0  for ( x , y ) ~ D  

Setting e2= re~M, we find for (4.14) the form 

Lr  = Y~x - U' (x)  ry + ~ x, y - 2~2y + 2~ 

+~  x , y - 2 e 2 y - 2 e  - 2 z ( x , y )  = - 1  (4.16) 

This model was proposed in Ref. 18, where weak convergence of the jump 
process (X(t) ,  Y( t ) )  to a diffusion process as e ~ 0 was shown for time 
intervals of order 1/e. In Ref. 6 we showed that the standard diffusion 
approximation was valid and that it was described by Kramers' backward 
equation 

. 

= L o p  = YPx - [ U'(x) + fly] py ~- - - ~  pyy (4.17) 

where p is the density in phase space. Equation (4.17) is the backward 
Kolmogorov equation corresponding to the diffusion approximation 
defined by the stochastic system 

2 =  y, ~ = - U ' ( x ) -  fly + (2 f l kT /M)  1/2 ~ (4.18) 

where w(t)  is a Brownian motion. We define the domain D as the domain 
of attraction of the stable equilibrium state of (4.18) with T=  0, and F as 

822/45/1-2-18 
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its boundary. The mean time Vo for the diffusion approximation to 
(X(t), Y(t)) to hit F is the solution of 

Lozo = - 1  in D (4.19) 

Zo = 0 on F (4,20) 

We now show that this approximation is valid for initial conditions inside 
D, outside a boundary layer near F. Near F a correction is needed, as in 
the previous example. In addition, z suffers a jump discontinuity of order 
at F. Thus, expanding 

T = "f 0 -'[- e'L" 1 -'[- ' '" ( 4 , 2 1 )  

we find that Zo satisfies (4.19), and 

Lozl = Llzo = 0 (4.22) 

and so on. To determine the boundary conditions we consider Eq. (4.16) in 
the boundary layer. We scale near any boundary point (x, Yo) by 

and define 

Equation (4.16) is then 

U'(x) 
(yo-~'7) Tx+ 

q = (Yo - Y)/e, q > 0 (4.23) 

r(x, y)= T(x, q) (4.24) 

T, + fl--~- { T 2 tl -- 2 ( ~--~ uz + 2e(yo -- etl ) ) 

for ~/> O, and 

We expand 

(4.25) 

T ~  T o + e T  1 + " "  (4.27) 

and obtain to leading order O(1/e 2) 

~o~o= ~o (x ~ ~ ( ~ )  + ~o (x ~ +~ ( ~ )  ~0~ ~) =0 
(__~ 1/2 

for r/> 2 (4.28) 

T(x, tl)=O for t/~<0 (4.26) 
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and 

T O x , q + 2  =2To(x, r / )  for 0 < q ~ < 2  (4.29) 

Hence, on the lattice r/= 2 ( k T / M )  m n, n = 1, 2,..., 

T o x, 2 n +  = To(x, 0 + ) ( l  + n )  (4.30) 

where To(x, 0 +  ) is an undetermined function. Matching the expansion 
(4.27) with (4.21) as y ~ Yo, e ~ 0, and r / ~  0o through the lattice points, 
we obtain 

To(x, 0 +  ) = 0  (4.31) 

so that 

To(x, 17) = 0 (4.32) 

and consequently 

To(X, Yo) = 0 (4.33) 

At the next order, we obtain 

~aoT ~ = 0  (4.34) 

since To=0 .  Using (4.30) and (4.31) in the equations for T1, we obtain 

TI x, 2 n +  = T ~ ( x , O + ) ( l + n ) ,  n = 0 , 1  . . . .  (4.35) 

where T~(x, 0 + ) is to be determined by matching. Proceeding as above, we 
obtain 

~i( x,  Y) - ~Vo,y( x,  Y) -- T1( x, ~1) -+ 0 (4.36) 

as y ---, Yo and e ~ 0 on the lattice. It follows that 

"CO,y(X, Yo) = --TI(X, 0 +  ) (4.37) 

and 

T~(x, Yo) = Tl (x ,  O+ ) 2 ( k T / M )  m 
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Thus 

rl(x, Yo)= -2(kT/M)  1/2 %,y(x, Yo) 

Knessl et  al. 

(4.38) 

It follows that z(x, y) suffers a discontinuity of size 

eTl(x, O+ ) = - ( r e ~ m )  1/2 "Co,y(x , Yo) 

at F. At boundary points (x, Yo) where %,y(X, Yo)= 0, the discontinuity is 
of order 52 . 
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